What’s Research Say About CBD Oil and Diabetes?

1Zhang, X. F. & Tan, B. K. H. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 28, S37–S42 (2000). 
2Wang, X. et al. Identification of a Molecular Signature in Human Type 1 Diabetes Mellitus Using Serum and Functional Genomics. J. Immunol. 180, 1929–1937 (2008).
3Kahn, B. B. & Flier, J. S. Obesity and insulin resistance. J. Clin. Invest. 106, 473–481 (2000).
4Leiter, E. H. The genetics of diabetes susceptibility in mice. FASEB J. 3, 2231–2241 (1989).
5Nathan, D. M. et al. Modern-day clinical course of type 1 diabetes mellitus after 30 years’ duration: The diabetes control and complications trial/epidemiology of diabetes interventions and complications and Pittsburgh epidemiology of diabetes complications experience (1983-2. Arch. Intern. Med. 169, 1307–1316 (2009).
6Brem, H. & Tomic-canic, M. Cellular and molecular basis of wound healing in diabetes Find the latest version : Cellular and molecular basis of wound healing in diabetes. 117, 1219–1222 (2007).
7Pisanti, S. et al. Cannabidiol: State of the art and new challenges for therapeutic applications. Pharmacol. Ther. 175, 133–150 (2017).
8Booz, G. W. Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Radic. Biol. Med. 51, 1054–1061 (2011).
9Pertwee, R. G. The diverse CB 1 and CB 2 receptor pharmacology of three plant cannabinoids: Δ 9-tetrahydrocannabinol, cannabidiol and Δ 9-tetrahydrocannabivarin. Br. J. Pharmacol. 153, 199–215 (2008).
10Laprairie, R. B., Bagher, A. M., Kelly, M. E. M. & Denovan-Wright, E. M. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br. J. Pharmacol. 172, 4790–4805 (2015).
11Campos, A. C., Moreira, F. A., Gomes, F. V., del Bel, E. A. & Guimarães, F. S. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos. Trans. R. Soc. B Biol. Sci. 367, 3364–3378 (2012).
12World Health Organization. Department of Essential Medicines and Health Products, Team of Innovation, A. and U. Cannabidiol (CBD) Critical Review Report. Expert Comm. Drug Depend. 4–7 (2018).
13Small, E. & Beckstead, H. . Common Cannabinoid Phenotypes in 350 stocks of Cannibis. AGRIS 144-165e (1973).
14Stott, C. G., White, L., Wright, S., Wilbraham, D. & Guy, G. W. A phase i study to assess the single and multiple dose pharmacokinetics of THC/CBD oromucosal spray. Eur. J. Clin. Pharmacol. 69, 1135–1147 (2013).
15Lucas, C. J., Galettis, P. & Schneider, J. The pharmacokinetics and the pharmacodynamics of cannabinoids. Br. J. Clin. Pharmacol. 84, 2477–2482 (2018).
16Tham, M. et al. Allosteric and orthosteric pharmacology of cannabidiol and cannabidiol-dimethylheptyl at the type 1 and type 2 cannabinoid receptors. (2019). doi:10.1111/bph.14440
17Castillo, A., Tolón, M. R., Fernández-Ruiz, J., Romero, J. & Martinez-Orgado, J. The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB2 and adenosine receptors. Neurobiol. Dis. 37, 434–440 (2010).
18Iannotti, F. A. et al. Nonpsychotropic plant cannabinoids, Cannabidivarin (CBDV) and Cannabidiol (CBD), activate and desensitize Transient Receptor Potential Vanilloid 1 (TRPV1) channels in vitro: Potential for the treatment of neuronal hyperexcitability. ACS Chem. Neurosci. 5, 1131–1141 (2014).
19Deutsch, D. G. & Chin, S. A. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem. Pharmacol. 46, 791–796 (1993).
20Laprairie, R. B., Bagher, A. M. & Denovan-wright, E. M. Cannabinoid receptor ligand bias : implications in the central nervous system. Curr. Opin. Pharmacol. 32, 32–43 (2017).
21El-Remessy, A. B. et al. Neuroprotective effects of cannabidiol in endotoxin-induced uveitis: Critical role of p38 MAPK activation. Mol. Vis. 14, 2190–2203 (2008).
22Hua, T. et al. Crystal Structure of the Human Cannabinoid Receptor CB 1. Cell 167, 750-762.e14 (2016).
23Morales, P., Goya, P. & Jagerovic, N. Emerging strategies targeting CB2 cannabinoid receptor: Biased agonism and allosterism. Biochem. Pharmacol. 157, 8–17 (2018).
24Navarro, G. et al. Targeting cannabinoid CB2 receptors in the central nervous system. Medicinal chemistry approaches with focus on neurodegenerative disorders. Front. Neurosci. 10, 1–11 (2016).
25Ruhaak, L. R. R. et al. Evaluation of the Cyclooxygenase Inhibiting Effects of Six Major Cannabinoids Isolated from Cannabis sativa. 34, 774–778 (2011).
26Costa, B. et al. Oral anti-inflammatory activity of cannabidiol, a non-psychoactive constituent of cannabis, in acute carrageenan-induced inflammation in the rat paw. Naunyn. Schmiedebergs. Arch. Pharmacol. 369, 294–299 (2004).
27Ribeiro, A. et al. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: Role for the adenosine A2A receptor. Eur. J. Pharmacol. 678, 78–85 (2012).
28Weiss, L. et al. Cannabidiol lowers incidence of diabetes in non-obese diabetic mice. Autoimmunity 39, 143–151 (2006).
29Weiss, L. et al. Cannabidiol arrests onset of autoimmune diabetes in NOD mice. Neuropharmacology 54, 244–249 (2008).
30Klein, B. E. K., Moss, S. E., Klein, R. & Surawicz, T. S. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. Ophthalmology 98, 1261–1265 (1991).
31Trap-Jensen, J. & Lassen, N. A. Increased capillary diffusion capacity for small ions in skeletal muscle in long-term diabetics. Scand. J. Clin. Lab. Invest. 21, 116–122 (1968).
32Porta, M., Selva, M. La, Molinatti, P. & Molinatti, G. M. Endothelial cell function in diabetic microangiopathy. Diabetologia 601–609 (1987).
33Rajesh, M. et al. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am. J. Physiol. – Hear. Circ. Physiol. 293, 610–619 (2007).
34Wade, D. T., Robson, P., House, H., Makela, P. & Aram, J. A preliminary controlled study to determine whether whole-plant cannabis extracts can improve intractable neurogenic symptoms. Clin. Rehabil. 17, 21–29 (2003).
35Urits, I. et al. An Update of Current Cannabis-Based Pharmaceuticals in Pain Medicine. Pain Ther. 8, 41–51 (2019).
36Wang, J., Song, Y., Wang, Q., Kralik, P. M. & Epstein, P. N. Causes and Characteristics of Diabetic Cardiomyopathy. Rev. Diabet. Stud. 3, 108–108 (2006).
37Selvin, E., Marinopoulos, S., Berkenblit, G., Rami, T. & Brancati, F. L. Meta-Analysis: Glycosylated Hemoglobin and Cardiovascular Disease in Diabetes Mellitus. (2004).
38Rajesh, M. et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J. Am. Coll. Cardiol. 56, 2115–2125 (2010).
39Stanley, C. P., Hind, W. H. & O’Sullivan, S. E. Is the cardiovascular system a therapeutic target for cannabidiol? Br. J. Clin. Pharmacol. 75, 313–322 (2013).
40Russo, E. B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 163, 1344–1364 (2011).

Originally Published on 2020 11 30 by Matt Bacine | CBD School

Thank you for joining us today for our latest news post. If you have any questions or comments about this post, we’d love to hear from you in the comments! Join the FindHempCBD.com newsletter to stay up to date on the latest Industry News and keep an eye out for our next news article!

Disclaimer: This content was sourced from CBD School and republished to our website to add value and additional content for our readers. In order to maintain the safety, functionality, and integrity of FindHempCBD.com, the sourced content may have been altered. To access the original content, please click the link below:

Pin It on Pinterest

Share This